48 research outputs found

    On density-based data streams clustering algorithms: A survey

    Get PDF
    Clustering data streams has drawn lots of attention in the few years due to their ever-growing presence. Data streams put additional challenges on clustering such as limited time and memory and one pass clustering. Furthermore, discovering clusters with arbitrary shapes is very important in data stream applications. Data streams are infinite and evolving over time, and we do not have any knowledge about the number of clusters. In a data stream environment due to various factors, some noise appears occasionally. Density-based method is a remarkable class in clustering data streams, which has the ability to discover arbitrary shape clusters and to detect noise. Furthermore, it does not need the number of clusters in advance. Due to data streams characteristics, the traditional density-based clustering is not applicable. Recently, a lot of density-based clustering algorithms are extended for data streams. The main idea in these algorithms is using density-based methods in the clustering process and at the same time overcoming the constraints, which are put out by data stream’s nature. The purpose of this paper is to shed light on some algorithms in the literature on density-based clustering over data streams. We not only summarize the main density-based clustering algorithms on data streams, discuss their uniqueness and limitations, but also explain how they address the challenges in clustering data streams. Moreover, we investigate the evaluation metrics used in validating cluster quality and measuring algorithms’ performance. It is hoped that this survey will serve as a steppingstone for researchers studying data streams clustering, particularly density-based algorithms

    Multi-sensor fusion based on multiple classifier systems for human activity identification

    Get PDF
    Multimodal sensors in healthcare applications have been increasingly researched because it facilitates automatic and comprehensive monitoring of human behaviors, high-intensity sports management, energy expenditure estimation, and postural detection. Recent studies have shown the importance of multi-sensor fusion to achieve robustness, high-performance generalization, provide diversity and tackle challenging issue that maybe difficult with single sensor values. The aim of this study is to propose an innovative multi-sensor fusion framework to improve human activity detection performances and reduce misrecognition rate. The study proposes a multi-view ensemble algorithm to integrate predicted values of different motion sensors. To this end, computationally efficient classification algorithms such as decision tree, logistic regression and k-Nearest Neighbors were used to implement diverse, flexible and dynamic human activity detection systems. To provide compact feature vector representation, we studied hybrid bio-inspired evolutionary search algorithm and correlation-based feature selection method and evaluate their impact on extracted feature vectors from individual sensor modality. Furthermore, we utilized Synthetic Over-sampling minority Techniques (SMOTE) algorithm to reduce the impact of class imbalance and improve performance results. With the above methods, this paper provides unified framework to resolve major challenges in human activity identification. The performance results obtained using two publicly available datasets showed significant improvement over baseline methods in the detection of specific activity details and reduced error rate. The performance results of our evaluation showed 3% to 24% improvement in accuracy, recall, precision, F-measure and detection ability (AUC) compared to single sensors and feature-level fusion. The benefit of the proposed multi-sensor fusion is the ability to utilize distinct feature characteristics of individual sensor and multiple classifier systems to improve recognition accuracy. In addition, the study suggests a promising potential of hybrid feature selection approach, diversity-based multiple classifier systems to improve mobile and wearable sensor-based human activity detection and health monitoring system. - 2019, The Author(s).This research is supported by University of Malaya BKP Special Grant no vote BKS006-2018.Scopu

    Bayesian nonparametric models for name disambiguation and supervised learning

    Get PDF
    This thesis presents new Bayesian nonparametric models and approaches for their development, for the problems of name disambiguation and supervised learning. Bayesian nonparametric methods form an increasingly popular approach for solving problems that demand a high amount of model flexibility. However, this field is relatively new, and there are many areas that need further investigation. Previous work on Bayesian nonparametrics has neither fully explored the problems of entity disambiguation and supervised learning nor the advantages of nested hierarchical models. Entity disambiguation is a widely encountered problem where different references need to be linked to a real underlying entity. This problem is often unsupervised as there is no previously known information about the entities. Further to this, effective use of Bayesian nonparametrics offer a new approach to tackling supervised problems, which are frequently encountered. The main original contribution of this thesis is a set of new structured Dirichlet process mixture models for name disambiguation and supervised learning that can also have a wide range of applications. These models use techniques from Bayesian statistics, including hierarchical and nested Dirichlet processes, generalised linear models, Markov chain Monte Carlo methods and optimisation techniques such as BFGS. The new models have tangible advantages over existing methods in the field as shown with experiments on real-world datasets including citation databases and classification and regression datasets. I develop the unsupervised author-topic space model for author disambiguation that uses free-text to perform disambiguation unlike traditional author disambiguation approaches. The model incorporates a name variant model that is based on a nonparametric Dirichlet language model. The model handles both novel unseen name variants and can model the unknown authors of the text of the documents. Through this, the model can disambiguate authors with no prior knowledge of the number of true authors in the dataset. In addition, it can do this when the authors have identical names. I use a model for nesting Dirichlet processes named the hybrid NDP-HDP. This model allows Dirichlet processes to be clustered together and adds an additional level of structure to the hierarchical Dirichlet process. I also develop a new hierarchical extension to the hybrid NDP-HDP. I develop this model into the grouped author-topic model for the entity disambiguation task. The grouped author-topic model uses clusters to model the co-occurrence of entities in documents, which can be interpreted as research groups. Since this model does not require entities to be linked to specific words in a document, it overcomes the problems of some existing author-topic models. The model incorporates a new method for modelling name variants, so that domain-specific name variant models can be used. Lastly, I develop extensions to supervised latent Dirichlet allocation, a type of supervised topic model. The keyword-supervised LDA model predicts document responses more accurately by modelling the effect of individual words and their contexts directly. The supervised HDP model has more model flexibility by using Bayesian nonparametrics for supervised learning. These models are evaluated on a number of classification and regression problems, and the results show that they outperform existing supervised topic modelling approaches. The models can also be extended to use similar information to the previous models, incorporating additional information such as entities and document titles to improve prediction

    Bayesian Painting by Numbers: Flexible Priors for Colour-Invariant Object Recognition

    Get PDF
    Generative models of images should take into account transformations of geometry and reflectance. Then, they can provide explanations of images that are factorized into intrinsic properties that are useful for subsequent tasks, such as object classification. It was previously shown how images and objects within images could be described as compositions of regions called structural elements or ‘stels’. In this way, transformations of the reflectance and illumination of object parts could be accounted for using a hidden variable that is used to ‘paint’ the same stel differently in different images. For example, the stel corresponding to the petals of a flower can be red in one image and yellow in another. Previous stel models have used a fixed number of stels per image and per image class. Here, we introduce a Bayesian stel model, the colour − invariant admixture (CIA) model, which can infer different numbers of stels for different object types, as appropriate. Results on Caltech101 images show that this method is capable of automatically selecting a number of stels that reflects the complexity of the object class and that these stels are useful for object recognition.Engineering and Applied Science

    Data mining techniques using decision tree model in materialised projection and selection view

    Get PDF
    With the availability of very large data storage today, redundant data structures are no longer a big issue. However, an intelligent way of managing materialised projection and selection views that can lead to fast access of data is the central issue dealt with in this paper. A set of implementation steps for the data warehouse administrators or decision makers to improve the response time of queries is also defined. The study concludes that both attributes and tuples, are important factors to be considered to improve the response time of a query. The adoption of data mining techniques in the physical design of data warehouses has been shown to be useful in practice

    Hybrid variational / gibbs collapsed inference in topic models

    Get PDF
    Contains fulltext : 69933.pdf (author's version ) (Open Access)24th Conference in Uncertainty in Artificial Intelligence, July 9-12, 2008, Helsinki, Finland, 09 juli 200

    Unsupervised Induction of Meaningful Semantic Classes through Selectional Preferences

    No full text

    Improving word sense disambiguation using topic features

    No full text
    EMNLP-CoNLL 2007 - Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning1015-102
    corecore